An Assembly Language | .D.E. To Engage Students Of All Levels
* A Tutorial *
2007 CCSC: Central Plains Conference

Pete Sanderson, Otterbein Colle@Sanderson@otterbein.edu
Ken Vollmar, Missouri State UniversitgenVollmar@missouristate.edu

MARS is a software simulator for the MIPS assentbhguage intended for educational
use. We will explore the capabilities of MARS rede&.2.1 in this three part tutorial.

MARS may be downloaded fromwv. cs. ni ssouri st at e. edu/ MARS.

Part 1: Basc MARSUse

The example program B bonacci . asmto compute everyone’s favorite number
sequence.

1. Start MARS from the Start menu or desktop icon.

2. Use the menubar File...Open or the Open | to open Fibonacci.asm in the
default folder(All icons have menubar equivalents; the remairafeéhese steps will
use the icon whenever possible.)

3. The provided assembly program is complete. Assethel@rogram using the icon

4. ldentify the location and values of the programisialized data. Use the checkbox to
toggle the display format between decimal and hesiachl || Hexadecimal Values
* The nineteen-element arréybs is initialized to zero, at addresses 0x10010000
... 0x10010048.
* The data locatiori ze has value 18, at 0x1001004c.
* The addresses 0x10010050 ... 0x1001006c contairteratinated ASCII strings.
Use the checkbox to toggle the display format betwaecimal and hexadecimal,
[| Hexadecimal Values

5. Use the Settings menu to configure the MARS displaye settings will be retained
for the next MARS session.

Page 1

* The Labels display contains the addresses of $enasy code statements with a
label, but the default is t@ot show this display. Select the checkbox from the
Settings | Tools Help

¥ Show Labels Window {symbol tahle)

¥ Permit extended (pseudo) instructions i
SettiNngS MENU i a i mcctin Gin conmen canmsninns ~aned mm Filn

» Select your preference for allowing pseudo-instans (programmer-friendly
instruction substitutions and shorthand).

» Select your preference for assemblardy onefile, or manyfiles together (all the
files in the current folder). This feature is ugééu subroutines contained in
separate files, etc.

» Select the startup display format of addressesvahos (decimal or
hexadecimal).

6. Locate the Registers display, which shows the 32@ngon MIPS registers. Other tabs
in the Registers display show the floating-poimgiseers (Coproc 1) and status codes
(Coproc 0).

7. Use the slider bar to change the run speed to difioustructions per second.
Run speed at max (no interaction)
: (/ This allows us to “watch the action” instead o th
assembly program finishing directly.

8. Choose how you will execute the program:

» The @ icon runs the program to completion. Using thanicyou should
observe the yellow highlight showing the prograpregress and the values of
the Fibonacci sequence appearing in the Data Segtisghay.

» The @ icon resets the program and simulator to initeles. Memory
contents are those specified within the progrard,ragister contents are
generally zero.

* The ®1 icon is “single-step.” Its complement 1@ , “single-step backwards”
(undoes each operation).

9. Observe the output of the program in the Run 1&pldiy window:
The Fibonacci numbers are:
1123581321345589 144 233 377 610 987 1597 2584 4181
-- program is finished running --

10. Modify the contents of memory. (Modifying a regist@lue is exactly the same.)
» Set a breakpoint at the first instruction of thbreutine which prints results. Use
the checkbox at the left of the instruction whoddrass is 0x00400060 =
419440Q,

Page 2

| | DxDD4DDDEDi DxEIEIEI44EIEEIiElEid §o,50,54 iSEI: print:a

* Reset @ and re-rur @ the program, which stops at the breakpoint.

» Double-click in one of the memory locations contagithe computed Fibonacci
numbers. The cell will be highlighted and will apt&eyboard entry, similar to a
spreadsheet. Enter some noticeably different valne,use the Enter key or click
outside the cell to indicate that the change isglete.Example: Memory address
0x10010020 = 268501024 presently contains data 0x00000022 =34

* Click @ to continue from the breakpoint. The program ouipcludes your
entered value instead of the computed Fibonaccbeunm
11.0Open the Hell. @ for information on MIPS instructions, pseudoinstions,
directives, and syscalls.

12. Modify the program so that it prompts the userthar Fibonacci sequence length.

» Select the Edit tab in the upper right to returthi program editor.

Edit | Execute
|1

Compute firs

* The MIPS comment symbol is #. All characters onlite after the character #
are ignored.

* Un-comment lines 12-19. The newly exposed progragnient will prompt the
user for the length of the Fibonacci sequence teigee, in the rang2< x<19.
(The length of the sequence must be limited tcsthe of the declared space for
result storage.)

» Determine the correelyscal | parameter to perform “read integer” from the user,
and insert the parameter at line The corsgetal | parameter may be found at

Help @ ... Syscall tab...read integer service. The completedwill have the
formli $vo, 42 (where in this case 42 is not the right answer).

* Reset @ and re-rur @ the program. The program will stop at the breakpoi

©

you inserted previously. Continue and finish w_ =1,

Page 3

Part 2: MARS Tools

You may have noticed that MARS ha3 @ols menu. The capabilities provided through
this menu really catapult MARS into a differentdea of computer science educational
software.

We call each of the items in the Tools menu a MARSI. A MARS Tool is best
described as a pop-up application that observesSMiEmory and/or register activity
during MIPS program execution then communicatesdbgvity to the tool user to serve
a particular purpose. This is best seen by example

MARS ToolsActivity 1: Running the Data Cache Simulator tool
1. Close any MIPS programs you are currently using.

2. Open the programow- naj or . asmfrom theExanpl es folder. This program
will traverse a 16 by 16 element integer matrixaw-major order, assigning
elements the values 0 through 255 in order. Itopers the following algorithm:

for (row = 0; row < 16; rowt+)
for (col = 0; col < 16; col ++)
data[row][col] = val uet+;
3. Assemble the program.

4. From theTools menu, seledData Cache Smulator. A new frame will appear in the
middle of the screen.

% Data Cache Simulation Tool, Yersion 1.1

Simulate and illustrate data cache performance
Cache Organization
Placement Policy | Direct Mapping i | Humber of blocks 8 -
Block Replacement Policy LRU | Cache hlock size {(words) 4 -
Set size (blocks) 1 ¥ | Cache size (lytes) 128
Cache Performance
Memory Access Count o/ Cache Block Tahle
Cache Hit Count o| {block O attop)
[] =empty
Cache Miss Count 0
O = nhit
Cache Hit Rate | 0% | W = miss
Tool Control
Connect to MIPS Reset Close

Page 4

This is a MARS Tool that will simulate the use geformance of cache memory
when the underlying MIPS program executes. Natgehree major sections:

= Cache OrganizationiYou can use the combo boxes to specify how theecach
will be configured for this run. Feel free to eayd the different settings, but
the default is fine for now.

» Cache PerformanceWith each memory access during program execution,
the simulator will determine whether or not thatess can be satisfied from
cache and update the performance display accoydingl

= Tool Control: These buttons perform generic control functiengescribed
by their labels.

5. Click the tool'sConnect to MIPS button. This causes the tool to register as an
observer of MIPS memory and thus respond duringnara execution.

6. Back in MARS, adjust thRun Speed dlider to 30 instructions per second. ltis
located at the right side of the toolbar. Thisasl@xecution so you can watch the
Cache Performance animation.

Run speed 30 instisec

I ko

7. In MARS, run the program using tiaun toolbar buttor @ , the menu item or
keyboard shortcut. Watch the Cache Performanceadaias it is updated with every
access to MIPS memory.

8. What was the final cache hit rate? . With each miss, a block of 4
words are written into the cache. In a row-majavérsal, matrix elements are
accessed in the same order they are stored in gerbus each cache miss is
followed by 3 hits as the next 3 elements are fanrtdie same cache block. This is
followed by another miss when Direct Mapping mapthe next cache block, and the
patterns repeats itself. So 3 of every 4 memocgsses will be resolved in cache.

9. Given that explanationyhat do you predict the hit rate will be if the tkosize is
increased from 4 words to 8 words? Decreased from 4 words to 2
words?

10. Verify your predictions by modifying the block siaed re-running the program from
step 7.
NOTE:when you modify the Cache Organization, the pentorce values are
automatically reset (you can always use the tétd&et button).

NOTE: You have ta eset @ the MIPS program before you can re-run it.

NOTE: Feel free to adjust tHeun Speed dider to maximum speed anytime you
want.

Page 5

11.Repeat steps 2 through 10 for progm@aoh urm- maj or . asmfrom theExanpl es
folder. This program will traverse a 16 by 16 edgrminteger matrix in column-major
order, assigning elements the values 0 throughr2b&der. It performs the
following algorithm:

for (col = 0; col < 16; col ++)
for (row = 0; row < 16; rowt+)
data[row][col] = val uet+;

NOTE: You can leave the Cache Simulator in place, niovet of the way, or close
it. It will not interfere with the actions neededopen, assemble, or run this new
program and will remain connected to MIPS memdfyou do not close the tool,
then skip steps 4 and 5.

12.What was the cache performance for this program? . The problem is
the memory locations are now accessed not seqligaabefore, but each access is
16 words beyond the previous one (circularly). Wifte settings we've used, no two
consecutive memory accesses occur in the same &doekery access is a miss.

13.Change the block size to 16. Note this will rékettool.

14.Create a second instance of the Cache Simulatontg again selectirngata Cache
Simulator from theTools menu. Adjust the two frames so you can view labthe
same time. Connect the new tool instance to MtR8nge its block size to 16 and
change its number of blocks to 16.

15.Re-run the programWhat is the cache performance of the original iostance?

. Block size 16 didn't help becauseettvas still only one access to
each block, the initial miss, before that block wegslaced with a new oneWhat is
the cache performance of the second tool instance? . At this point,
the entire matrix will fit into cache and so oncklack is read in it is never replaced.
Only the first access to a block results in a miss.

In what courses might an exercise like this onadedul for your students? | have used a
variation on this exercise as a student exercisgpi@rating Systems, and for a lecture
illustration of the cache concept in Otterbein's@&urse, "The Scope of Computer
Science".

Page 6

MARS ToolsActivity 2 : Running the Cache Smulator as a stand-alone

1. In command mode, traverse to the directory comagihlars.jar and enter the
command:

java -classpath Mars.jar mars.tools.CacheSinul ator

2. The cache simulator tool is launched. Its Tool @@arsection is replaced by
Application Control, which contains additional canis for loading, assembling and
running MIPS programs. It uses MARS' MIPS assendntel runtime simulator in
the background to control MIPS execution.

< Data Cache Simulator stand-alone, Yersion 1.1

Simulate and illustrate data cache performance
Cache Organization
Placement Policy | Direct Mapping - | Mumber of blocks 8 -
Block Replacement Policy LRU * | Cache block size {words) 4 -
Set size (blocks) 1 ¥ | Cache size (bytes) 128
Cache Performance
Memory Access Count p| Cache Block Table
Cache Hit Count g| (lock 0 attop)
O =empty
Cache Miss Count 0
O = hit
‘ Application Control I’
Run speed at max {no interaction)
| Mo file open. | L [
H 0Open MIPS program... | Reset | Exit

3. Click theOpen MIPS program button and a File Open dialog will pop up. Browse
to and select a MIPS program to run. Selext_nmaj or . asmagain if you wish.

4. TheAssemble and Run button is now enabled. Click it to assemble andthe
program. The animation will be very rapid.

5. Use theRun Speed dlider to adjust the running speed, click Reset button then
click Assemble and Run again. While the program is running, @p button is
enabled. Program status is updated in the siimgddéxt field.

We plan to implement a small MARS Tool Suite apgiicn to simplify the selection and
launching of tools such as the Cache Simulatoratetapable of running outside the
MARS integrated development environment.

Page 7

MARS ToolsActivity 3: TheMemory Reference Visualization tool

1. Open the programow maj or . asmfrom theExanpl es folder if it is not already
open.

2. Assemble the program.

3. From theTools menu, seledlemory Reference Visualization. A new frame will
appear in the middle of the screen.

& Memory Reference ¥isualization, Yersion 1.0

Visualizing memory reference patterns

Show unit houndaries {grid marks)

LE'

Memory Words per Unit

=3
4

Unit Width in Pizels 1

Unit Height in Pixels

16 =
Display Width in Pixels 256 ¥
R

Display Height in Pixels 256

Base address for display | 0x10010000 (static data) -

{zo)

|

Counter value 10

Tool Control

This tool will paint a grid unit each time the cesponding MIPS memory word is
referenced. The base address, the first statecsgaiment. (dat a directive) word,
corresponds to the upper-left grid unit. Addressespondence continues in row-
major order (left to right, then next row down).

The color depends on the number of times the wasddeen referenced. Black is O,
blue is 1, green is 2, yellow is 3 and 4, orandetisrough 9, red is 10 or higher.

View the scale using the tool’s slider control. uvaan change the color (but not the
reference count) by clicking on the color patch.

4. Click the tool'sConnect to MIPS button. This causes the tool to register as an
observer of MIPS memory and thus respond duringnar execution.

5. Back in MARS, adjust thRun Speed dlider to 30 instructions per second.

Page 8

6. Run the program. Watch the tool animate as iptated with every access to MIPS
memory. Feel free to stop the program at any time.

7. Hopefully you observed that the animation sequeoceesponded to the expected
memory access sequence of the row-major.asm prodfamou have trouble seeing
the blue reset the tool, move the slider to position 1 ngeathe color to something
brighter, and re-run.

8. Repeat steps 2 through 7, tosl utm- maj or . asm You should observe that the
animation sequence corresponded to the expectedmeancess sequence of this
program.

9. Repeat again fdri bonacci . asmto observe the animated pattern of memory
references. Adjust the run speed and re-run iéssary.

10. (Optional) Create a new instance of the Data Cache Simul&foxe the two frames
around so you can see both. Connect the cachdasonto MIPS and reset the
Memory Reference Visualization. Re-run the progrdrhis exercise illustrates that
two different tools can be used simultaneously.

The Memory Reference Visualization tool could befukin an operating systems course
to illustrate spatial and temporal locality and noeyrreference patterns in general.

Page 9

Part 3: Extending MARS Capabilities

Our session today is not long enough for interactetivities in this area, but we’'ll
provide you with enough detail that you can purhemn on your own if you desire.

Abstract

MARS can be customized and extended in four diffeveays: (1) writing new MARS
Tools, (2) writing new MIPS system calls, (3) wrginew MIPS pseudo-instructions,
and (4) writing new MIPS basic instructions. Teicjues for all four are described here.

You have the ability to extend and customize cedfARS capabilities to make it more
useful in your courses. This document describesddferent techniques for extending
MARS capabilities:

1. Ability to write MARS Tools for inclusion in the Tat$s menu and stand-alone use.
2. Ability to define and add new system calls for satpgent use by MIPS programs.

3. Ability to customize the instruction set by addingmoving or modifying pseudo
(macro) instruction specifications.

4. Ability to customize the basic instruction set l@dang, removing or modifying
basic instruction specifications.

These procedures apply to MARS 3.2.1, releasedadp2007. Some may be
streamlined in future releases.

The ability to define and plug in new MARS Tooldlvie used to develop new learning
aids for students in a variety of computer sciecm@rses and provide micro-worlds for
assembly language students to target in their gisojeThrough those tools it is possible
to deeply engage students in both settings.

The ability to modify the set of system calls, lbasstructions, and pseudo-instructions
can be used to define a complete instruction sedrialternative RISC architecture.
MARS was not designed with this in mind howeversspport is uneven. For example,
instruction syntax analysis and code generatianii@n by the example and template
provided with each instruction, whereas lexicallgsia such as the recognition of
register names is embedded in program logic andataasily be modified. A
customized instruction set has to use MIPS coneestior labeling, register naming, and
so forth. Hopefully MARS can be refactored in fietueleases to facilitate its use for
alternative instruction sets.

Page 10

1. Writing your own MARS Tool and plugging it into MARS

Abstract

If you think MARS Tools like the Cache Simulatoeaol then why not develop your
own? There are two different ways to do so: (lijena class that implements the
MarsTool interface and is launched from the Toodmin MARS, or (2) write a class
that extends the AbstractMarsToolAndApplicatiorssland runs either from the Tools
menu or as a free-standing application. You cao @akite a free-standing application
that uses the Mars API.

This section describes two different techniquesifareloping your own MARS Tool.

1. Write a class that implements thar s. t ool s. Mar sTool interface and keep
it in themar s. t ool s package. It will automatically be added to Thamls
menu the next time MARS is run and launched wheminu item is selected.

2. Write a class that extends
mar s. t ool s. Abst ract Mar sTool AndAppl i cati on and keep it in the
mar s. t ool s package. It will automatically be added to Tremls menu the
next time MARS is run and launched when its meemits selected. It can also
be launched from outside MARS as a free-standiug daplication that uses the
Mars API to control the assembly and execution tP®programs.

It is also possible to write your own applicatioarh scratch using the Mars API. This
should be considered only for very specialized iappbns and should be undertaken
with great care. Thabst ract Mar sTool AndAppl i cati on class provides full
support for assembling and running MIPS progranteénbackground and is the
preferred approach.

MyTool 1 nplenents MarsTool approach

1. Extract the MARS distribution from its JAR file.h& JAR file does not have an
outermost folder to contain everything, so youdinvto create one and extract it into
that folder.

2. Develop your class in thear s. t ool s packagerfar s/ t ool s folder).
3. Your class must implement tivar sTool interface, which is in that package. This

has only two method$t ri ng get Nane() to return the name to be displayed in

Page 11

its Tools menu item, andoi d acti on() which is invoked when that menu item
is selected by the MARS user. These will assgrantlusion in the Tools menu
when MARS is launched.

. The user interface should be based orj #neax. swi ng. JDi al og class. The
tool interacts with simulated MIPS memory and regssthrough the

mar s. m ps. har dwar e. Menory andmar s. m ps. har dwar e. Regi st er
classes, both of which extepdva. util . Cbservabl e. The Memory class
provides several addObserver() methods that pemm@bserver to register for
selected memory addresses or ranges. Javadoceprbdacumentation is available
in thedoc folder of the MARS distribution.

. After successful compilation, MARS will automatilgeinclude the new tool in its
Tools menu.

MyTool extends Abstract Mar sTool AndAppl i cati on approach

A better alternative is to extend tAbst r act Mar sTool AndAppl i cat i on class,
which is also in the mars.tools package. By daiogyou get the following elements:

= ability to run either from the Tools menu or aseefstanding application
basic user interface JDialog with Tool Control gat(for tools)

basic user interface JFrame with Application Cdrgeztion (for applications)
basic user interface layout (BorderLayout) and esimg) algorithm

basic MIPS memory and register observer capalsilitie

. Extract the MARS distribution from its JAR fileybu have not already done so.
. Develop your class in thear s. t ool s packagertar s/ t ool s folder).

. Your class must extend tiAdst r act Mar sTool AndAppl i cat i on abstract
class, which is in that package. Nineteen of then2thods in this class have default
implementations.

. Define at least the two abstract methdstst i ng get Nanme() to return the tool's
display name, andiConponent bui | dMai nDi spl ayAr ea() to construct the
central area of the tool’s graphical user interfalktavill automatically be placed in
the CENTER of a BorderLayout, with title informatito its NORTH and tool
control buttons to its SOUTH. Several addAsObs#)yvaethods are available for
registering as a memory and/or register observer.

Page 12

5. Override additional methods as desired. Some tlimpby default.

6. After successful compilation, MARS will automatilgainclude the new tool in its
Tools menu.

7. Torun it as a stand-alone application, you eittesxd to add ami n() to create the
tool object and call itgo() method or write a short external application tdlu®
same.

For a better idea of the GUI elements that comh this abstract class, launch MARS
and selectntroduction to Tools from the Tools menu.

4 By extending the provided abstract class
Abst ract Mar sTool AndAppl i cati on, you
get everything in this figure except the
scrolledJText Ar ea displayed in the
center.

% Introduction to MARS Tools and Applications, Yersion...

Introduction to MARS Tools and Applications

Hello! This Tool does not do anything but you may use its source | =|
code as a starting point to build your own MARS Toal or Application. |2

W MARS Tool is a program listed in the MARS Tools menu. Itis :
launched when yau select its menu item and typically interacts with |2
executing MIPS programs to do something exciting and informative |
or at least interesting.

You build the main user interface of your
tool by defining the inherited abstract
bui | dvai nDi spl ayAr ea() method. This
method returns aConponent that will

o o automatically be displayed in the center of
The basic requirements for building a MARS Tool are:
1_ It rust be a class that implements the MarsTool interface. This the default Bordel'LaYOUt.

hag only two methods: 'String getMame (' 1o return the name to be
displayed in its Tools menu item, and Yoid action)" which is

W MARS Application is a stand-alane program far similarly

interacting with executing MIPS programs. 1t uses MARS MIPS :
assemhbler and runtime simulator in the background to control MIPS(S
execution.

invoked when that menu itern is selected by the MARS user. Javadoc-produced documentation of the
2. It rnust be stored in the mars tools package (n folder ; ;
arsitonts Abst ract Mar sTool AndAppl i cat i

3. tmust be suceessfully compiled inthat package. This normally on class is available in thdoc folder of
means the MARS distribution needs to be extracted from the JAR .. .
fle hefore you can develop yaur Toal. the MARS d|Str|bUt|0n.

Tool o te Tools men e nodime trune = Source code files for the MARS Tools are
Tool Contral included together with their bytecode files
Connect to MIPS | Reset | | awse | inthemar s/t ool s folder. Feel free to
refer to them. All MARS source files,
including tools, are included in tlsa c
folder.

1

If you develop a nifty MARS Tool, feel free to seibdo us and with your permission
we'll post it on the MARS web site for others t@lus

Page 13

2. Writing a system call (syscall) and plugging it into MARS

Abstract

MIPS System calls are functions that interface whihoperating system to perform 1/Q
and related operations. They are accessible t&&MHB3embly programs through service
numbers and theyscal | instruction. MARS provides the 17 system callswdoented
in Computer Organization and Design Third Editidrut you can develop and add you
own by writing a class that implements the Sysoddirface or extends the

AbstractSyscall class.

-

MIPS system calls perform operating system funestiamd input/output operations in
particular. A system call is used in MIPS assentiytyoading its identifier (an integer)
into register $v0, loading any required argumenits registers as specified by the call's
protocol, then issuing theyscal | instruction.

MARS supports the MIPS system call specificationgigin Appendix A of Patterson
and HennessyGomputer Organization and Design Third Editiofihis appendix is
freely available on the web latt p: / / www. cs. wi sc. edu/ ~I ar us/ HP_AppA. pdf .
MARS provides all 17 of the system calls specitiegtre.

%% MARS 3.2.1 Help

MARS | Bug Reporting and Comments | License | Instruction Set Sang
MARS 3.2.1 assembles and simulates the MIPS-32 instructions and directives listed below.

Instruction format Key: Snmeans integer register, 5fn means floating point register, 1 means condition
fMag (0-7), 10 means 5-bit integer, 100 means 16-bit integer, 100000 means 32-bit integer, 1abel and

target mean textual labels.

See a MIPS language reference for further details.

Basic Instructions rExtended(pseudo)lnstructions rDirectives rSyscaIIs |

SYSCALL functions availahle in MARS

Introduction

SPIM simulator.
How to use SYSCALL system services
As with tnost things assembler, this is a rriltistep process.

1. load the service number in register $w0.

2. load argurnent values, if any, in $a0, $al, $a2, or $f12 as specified.
3. 1zsue the 3YSCALL mstruction

4. retrieve return values, if any, from result registers as specified.

lay the value stored in $t0 on the console

A mamber of systern services, mainly for input and outpt, are available for use by your MIPS
program. They are described in the table below, and are compatible with those provided by the

[4]

le: di

[»]

Page 14

MySystentCal | inplenments Syscall approach

1. Extract the MARS distribution from its JAR file,ybu have not done so.

2. Develop your class in thear s. mi ps. i nstructi ons. syscal | s package
(mar s/ m ps/instructions/syscal | s folder).

3. Your class must implement ti8yscal | interface, which is in that package. This
has four methodsSt ri ng get Nanme() to return an assigned name for this
serviceset Nunber () andget Nunber () to set and get its associated service
number, andgi nmul at e() to simulate the execution of the system call aP$1l
runtime.

4. After your class compiles successfully, it will #etomatically plugged in and
available to MIPS programs the next time you lauM@RS.

MySystentCal | extends Abstract Syscal |l approach

1. Extract the MARS distribution from its JAR file,ybu have not done so.

2. Develop your class in thear s. mi ps. i nstructi ons. syscal | s package
(mar s/ m ps/instructions/syscal | s folder).

3. Your class must extend tidst r act Syscal | class, which is in that package. It
provides a constructor and defines the tt8ggcal | getter and setter methods. The
si mul at e() method is abstract so you must define that yolrsel

4. After your class compiles successfully, it will #etomatically plugged in and
available to MIPS programs the next time you lauM&RS.

Additional Information

Implementation of thei nmul at e() method may require access to one or more
simulated MIPS memory and register objects. Thenant classes are

mar s. m ps. har dwar e. Menory andmar s. m ps. har dwar e. Regi st er Fi | e.
Also study the source code of existing system c&lgurce code files for the 17 MARS
system calls are located in thec folder. Follow the folder hierarchy

mar s/ m ps/instructions/syscal | s.

Page 15

The MARS distribution includes a text figyscal | . properti es which you can edit
to override any system service number assignedconstructor. This allows you to
change number assignments without re-compilingJamwa source files.

The Syscalls help page is static at this time so it will ndleet any additional system
calls or renumbering.

If you develop a nifty system call, please sertd iis and with your permission we'll post
it on the MARS web site for others to access!

We have had philosophical discussions concerniagiévelopment of additional system
calls and so far have resisted doing so. On ond,hwould be very useful to have a
small library of handy functions such as random berngenerators available through the
syscall mechanism. On the other hand, such fumgtioe not considered operating
system operations that would be performed in kemale and it would be misleading to
infer such status. Let us know what you think!

Page 16

3. Modifying the set of pseudo (extended, macro) instructions

Abstract

To define a new pseudo-instruction, edit Bs=udoOps. t xt file included in the
MARS distribution. The instruction specificatiamaone line long and consists of a tabt
separated list containing an example usage ofteuiction followed by the one or more
basic instructions that the assembler will expara.i Use specification language
symbols to control the substitution of programesta¢nt operands into the generated
basic instruction(s).

The MIPS instruction set includes a large numbegysafudo-instructions. These are
instructions that follow MIPS instruction syntaxeggfications but are not directly
supported by the MIPS architecture. They are atsexpanded into a sequence of one or
more basic instructions by the assembler. For#dason they are sometimes called
macro instructions.

The classic example of a pseudo-instructidnaisor load address. Here's an example:
la $t0, nunber

wherenunber is the label for a data item. A corresponding BllRachine instruction

would have to include the operation code, the Bdgister number and the 32 bit

address. But since machine instructions are a2lgi3 long, this is not possible. It

requires two instructions.

Pseudo-instructions are provided entirely for trmgpammer's convenience, and MARS
includes an assembler setting that will disallowirtlise.

To modify the pseudo-instruction set, follow this process:

1. Extract the MARS distribution from its JAR fileybu have not already done so.

2. EditPseudoQOps. t xt appropriately. Each pseudo-instruction and itsnma
expansion are specified on one line in this filetdils below.

3. Launch MARS and test your instruction.

Page 17

Here's an example specification, for #iesolute value instructionabs

abs $1,%$2 addu RGL, $0, R bgez R@,2 sub RGL, $0, R&2
1 2 3 4

1. Example instruction use. This instruction takes tegister operands. The $1 and $2
represent generic registers and are used onlyrtergee a token sequence for syntax
analysis. There is no relationship between register refeesnin the example
instruction (item 1) and register references in thacro expansions (items 3 and 4)!

2. Each item in the specification must be separated ¥ipngle TAB character. Only the
first one is pointed out but there is also a TABA®En each of the remaining items.

3. The first instruction of the macro expansion. R&a formal parameter that will be
replaced by the actual first register operand efdfatement being assembled. RG2 is
similarly replaced by the actual second registarapd of the statement being
assembled.

4. Second and third instructions of the macro expamdterform similar substitutions.

Statement to assemble Macro expansion
abs $t3, $t4 addu $t3, $0, $t4
bgez $t4, 2
sub $t3, $0, $t4

This example uses the simple substitutions RGIR{BA. Other macro substitution
symbols are more complex, suchvdP3 which means to substitute the low order 16
bits of the 32 bit value in source operand 2 aititing 3 to it (used in the expansion of
certain unaligned loads and stores).

The macro substitution language is described iaildetthe file itself.

If you add any pseudo-instructions, they will au&tically be included in the instruction
list produced by the Help featur&stended (pseudo) I nstructions subtab. If the
instruction specification ends with a comment amghme line (# is the comment marker,
just like in MIPS), that comment will be includedthe list along with the example
instruction use.

Page 18

4. Modifying the set of Basic Instructions

Abstract

It is possible to modify the basic instruction sstognized by MARS. This requires you
to edit and re-compile thear s. m ps. i nstructions. | nstructi onSet class.
The specification of a basic instruction includesrfcomponents: (1) an example of
instruction use, (2) the instruction format — Rol J, (3) a template for generating the 32
bit machine code from a program statement, and (dgthod to simulate the execution
of that program statement.

This is the one type of MARS extension that requmeecompilation of a standard MARS
source file. Specifications for the MIPS basidrustion set are contained in the

mars. m ps.instructions.lnstructionSet class. Each specification follows
the same format. Here is an example, forathd instruction that performs logical AND.

i nstructionLi st. add(new Basi cl nstructi on(

"and $1, $2, $3", <«— 1. example use
Basi cl nstructi onFor mat . R_FORVAT, <+— 2. instruction format
"000000ssssstttttfffff00000100100", «— 3. machine code template
new Si nul ati onCode() <— 4. execution simulator
{
public void sinul ate(Prograntt at ement st at enent)
{
int[] operands = statenent.getOperands();
Regi st er Fi | e. updat eRegi st er (
oper ands[0] ,
Regi sterFil e. get Val ue(operands[1]) &
Regi st er Fi | e. get Val ue(oper ands| 2]));
}
}
));

TheBasi cl nst ructi on constructor takes four parameters, annotateden th
example:

1. Example instruction use. This instruction takeedtregister operands. The $1, $2

and $3 represent generic registers and are usgdoogénerate a token sequence for
syntax analysis.

Page 19

2. MIPS instruction format. MIPS defines the R-forrabrks with registers), I-format
(works with immediate value), and J-format (jumptiaction). MARS defines a
second version of the I-format called I-branch-fatmvhen the immediate value is
used in a branch instruction.

3. Machine code template. This String of length 3@ststs of the characte@s 1, f, s,
andt . When the MIPS program statement syntacticallyches this instruction, the
32 bit machine code instruction is constructed udyssituting low order bits from the
first operand fof , low order bits from theecond operand fa and low order bits
from thethird operand fot . The result is converted to 32 bit binary. Téxsmple
has register numbers which are 5 bits because NIE8fnes 32 integer registers.

4. Constructs the object whosenul at e() method will be called to simulate the
execution of the program statement at MIPS runtiffiee object is constructed from
an anonymous subclass of thienul at i onCode class defined right here. The
si mul at e() method receives information about the progranestant as a
parameter and manipulates MIPS registers and/orameta carry out the instruction.

To modify the basic instruction set, follow this process:
1. Extract the MARS distribution from its JAR fileybu have not already done so.

2. CopylnstructionSet.java fromthesrc/ mars/ m ps/instructions
folder into themar s/ m ps/i nstructi ons folder.

3. Make a backup copy dfnst ructi onSet . j ava for safe keeping.

4. Editl nstructi onSet. | ava appropriately. Implementation of the
si mul at e() method will likely require access to one or mareudated MIPS
memory and/or register objects. The pertinentselasre
mar s. m ps. har dwar e. Menory and
mar s. m ps. har dwar e. Regi st er Fi | e. Javadoc-generated documentation for
all MARS classes is provided in the distributicssc folder. Also study the source
code of existing instructions.

5. Compilel nstructi onSet.java and test your instruction.

NOTE: This technique applies to MARS release 3.2.1s piossible that the technique
for specifying basic instructions will change ifuture release of MARS. If so, it would
be converted to a technique similar to that nowddeesystem calls.

Page 20

